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Interaction of Ising-Bloch fronts with Dirichlet boundaries
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We study the Ising-Bloch bifurcation in two systems, the complex Ginzburg Landau equatirE) and
a FitzHugh Nagumd@FN) model in the presence of spatial inhomogeneity introduced by Dirichlet boundary
conditions. It is seen that the interaction of fronts with boundaries is similar in both systems, establishing the
generality of the Ising-Bloch bifurcation. We derive reduced dynamical equations for the FN model that
explain front dynamics close to the boundary. We find that front dynamics in a highly nonadiagbatidron?
limit is controlled by fixed points of the reduced dynamical equations, that occur close to the boundary.
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I. INTRODUCTION fixed chemical concentrations at the boundary of a reactor
. , o (Dirichlet boundary conditions An adiabatic description of
In spatially extended reaction-diffusion systems far fromponniform front motion along the lines 4] is inadequate.
equilibrium, the interplay of the diffusion and reaction pro- it rgjies on nullclines and fails to explain the jumps from one
cesses is frequently associated with the formation of spatigjyjicline to another or the influence of fixed points. There-
or temporal patterns in the concentration fields€]. One  fore we employ a dynamical approach which satisfactorily
such example is a frontlike structure connecting two differentyccqynts for jumps and fixed point influence. We also estab-
homogeneous steady states. In a bistable system, where bgidy, the generic nature of nonuniform front motion in the

steady states are sta}ble against small perturbation_s, _theﬁF‘esence of spatial inhomogeneities by studying it in two
fronts can undergo bifurcations, known as nonequilibriumg;stinct systems, the FN and CGL models.
Ising-Bloch bifurcations, where a stationary Ising front €x-  Thg nteraction of traveling fronts with boundaries for Di-
changes stability with a pair of counterpropagating Blochyichiet houndary conditions shows several new features. We
fronts. Thls bifurcation has_ be_en'observed in sevelral cheMisge 3 transition from front reversal to trapping of an incom-
cal reactiong4—6] and also in liquid crystalf7—9] subjectto jng Bloch front on its approach to a boundary as a function
an external time-dependent perturbation. of boundary values. We also find that trapped fronts and
Two models of this Ising-Bloch bifurcation have been ex-reyersed fronts can coexist for certain boundary conditions.

tensively studied in this context. One is the parametrically,:ina"y, we derive reduced dynamical equations that explain
forced complex Ginzburg Landau equati@GLE) [7]. This  ihe features mentioned above.

system describes nematic liquid crystals subjected to a rotat- |, gec. |1 of this paper we review the relevant details of

ing magnetic field and a high frequency electrical fif8ll  the CGL and FN models. Section 11l presents our numerical
The CGLE is often used in spatially extended systems Qyqgy of the two models. Section IV contains an analytic

describe the dynamics close to an oscillatory instabilitysy,qy of front interactions with boundaries for the FN model.
(Hopf bifurcation. The other is a FitzHugh Nagum&N) oy conclusions are listed in Sec. V.
model[4,10-13, which qualitatively models various chemi-

cal reactions[14—1§. Front solutions in this model have
been extensively investigated, specially when translational Il. THE MODELS

invariance is broken by the presence of spatial inhomogene- . . .
ities, which is often the case in realistic experimental situa- The parametrically forced CGLE is the generic model de-

tions. This includes the ways in which one Bloch front Canscribing th_e slow phase and amplitude modglations of a spa-
be perturbatively changed to the othé&ading to front re- tially d!strlbut.ed assemply of coupled oscnlator§ near .'tS
versa) [10-13. Particularly, one such scenario for front re- Hopf blfu_rcatlon[17]. This _ass_embly of auto-oscillators is
versals and other exotic nonuniforivariable velocity front parametrically forced at twice its natural frequency and can

motion like breathing, involves the breaking of translationalbe written as
invariance by zero flux boundary conditiof4]. This non- IA
uniform motion of fronts is explained by the presence of —. =(u+iv)A+(1+ia)V?A- (1 +iB)|APA+ yA* + k.
uniform velocity front solutiongnuliclines of the FN model
partial differential equationgo which faster or slower mov- (1)
ing fronts relax adiabatically.

In this paper we examine nonuniform front motion in the
case when translational invariance is broken by imposin

The complex fieldA contains the amplitude and phase of the
coupled oscillatorspe measures the distance from the oscil-
gFatory instability thresholdyp is the detuning of the forcing
term frequency from exactly twice the Hopf frequenay,
and B are real control parameters, and>0 is the forcing
*Electronic address: yadav@phys.lsu.edu amplitude at twice the natural frequency. The right-hand side
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of Eq. (1) cannot be written in a variational formif, , and ~ X(a;+1/2)%? [12]. The Bloch wall velocities in the FN
B are nonzero. model are proportional t@7.— 7, the deviation of the bifur-

The parametek represents parametric forcing at the natu-cation parameter from its critical value, as expected for a
ral frequency of the system. K=0, Eq.(1) has a the parity pitchfork bifurcation.
symmetryA— —A, and the nonequilibrium Ising-Bloch bi- As discussed above, both these models have common fea-
furcation is a symmetric pitchfork7,18 with the front ve-  tures associated with the front bifurcation. This forms the
locity as the order parameter. Zero velocity Ising walls losebasis of their comparative study in the forthcoming sections.
stability to counterpropagating Bloch walls as the bifurcationFront dynamics in both these systems can be represented by
parametery crosses its critical value. The pitchfork unfolds the system of equations,
into a saddle node bifurcation for a nonzerowhere along

with the stable Ising wall a stable and unstable pair of Bloch x=c,
walls appear at the bifurcation. Bloch walls move as a result
of broken chirality symmetry due to the introduction of non- c=(p.—- p)c—gc. (3

zero nonvariational paramete#. Chirality breaking is un- These equations employ the pitchfork bifurcation normal

gl:aeblztr;et:gtén ;(\:/k;%rélzn;i SLSf{gglt e rgftr']? Q{aggﬁ{g &agal(()]ballyform with velocity as the order parameter, coupled with thef:
; oo - trivial observation that the velocity is the rate of change o
In the perturbative limit vvhen nonvariational parametersposition. The front velocit and p)ésitionx therefore 00?1—
,E(C; ’Bi ’ V)rgri;irgr?gi tth?%loc;g g; Bé?;: dfrfc()) r:tz cailtr:: rk:f((a)rskhg\i/_vn stitute two degrees of freedom, that are sufficient to describe
prop o=y @ P . P front dynamics close to the front bifurcation. The bifurcation
furcation, wherey, is the critical blfurqatlon parameter. parametep is denoted byy for the CGL equation and, for
Now we look at the FN model which also shows a frontthe EN model. The two independent varia dx inCEq
bifurcation. This is a S|mpI§ two component model and has(s) which aré obviously uncoupled, represent dyna.mics
beer_l thc_»rough_ly analyzed in Re_[9_0—13,21 in the context where translational invariance is present, and the solutions
of this bifurcation. It has been widely used |20 model patterns, - independent of a choice of spatial origin. Scenarios can
in reactions like the Belousov-Zhabotinsk3Z) reaction o . X . y .
[22-28, ferrocyanide-iodate-sulfiteFIS) reaction [4] and be envisioned where this translational invariance is broken.

S i . . Examples are the imposition of different boundary condi-
chlorite-iodide-malonic-acid reactifCIMA) [14-16. The tions[4] or spatial inhomogeneities introduced externally via
two component reaction-diffusion system, witlix,t) im-

. ) S an advective field12]. To account for broken translational
peding the production ai(x,t), is given by invariance in these scenarios, one has to modify(8q.This

Ju_ . L would lead to the coupling of the two degrees of freedom_
E: € (U—U"—v)+ & Uy, and c, the details of which would depend on the scenario
considered. In this paper, we introduce a spatial inhomoge-

neity in the form of Dirichlet boundary conditions, examin-

Juv _ _ ing its effect on incoming Bloch fronts in both models, and

= (U=2agv = ag) + Uy (2 . : . :

at drawing parallels. The next section constitutes our numerical

. ) i study. In Sec. IV, we derive and analyze the way in which
The parameters and ¢ differentiate the time scales and i ichiet boundary conditions couple and ¢ for the FN

space scales of the two fields, respectively. The parametef§sqe|. Such an analysis is not possible for the CGL equation
a; and a, characterize renormalized local reaction param-

4 ' st e since it is impossible to represent the front position by a
gters, pqssmly aftelr an adlab_atlc elimination of fa}ster reactéing|e point. Therefore, we rely exclusively on numerical
ing species. Equation®) are in general nonvariational eX- gimulations for that equation.
cept for certain specific parameter values. The paranagter
is analogous to the parameterin the CGL equation, and it
controls the symmetry of the front bifurcation.df=0, the
FN model undergoes a symmetric front bifurcation repre-
sented by a pitchfork. For a nonzeaigthe pitchfork unfolds In this section we lay out the numerical details of the
into a saddle node as in the CGLE. A notable differencestudy of the CGL and FN models. The simulations in the two
between the two systems is the presence of the paramietermodels are carried out in regimes where analytical calcula-
in the FN model. This parameter affects the relative spatiations performed by reducing front dynamics to a fewer de-
extent of the fronts connecting the trivial homogeneous sogrees of freedom are not possible. This is the regime where
lutions of Eq.(2). Thus, by choosing a suitabéd é ratio, the  Bloch fronts have high velocitiggar beyond the front bifur-
connecting fronts of one of the fields can be made very sharpation thresholyl and the fields forming the front core, have
compared to the other. This is not possible in the CGLEsimilar spatial scales.
where fronts for both the real and imaginary parts have the We solve both the CGL and FN system of reaction diffu-
same spatial extent. sion equations using an implicit Crank-Nicholson scheme.

Similar to the CGLE, the FN model has Ising and Bloch Dirichlet boundary conditions are used at both ends of the
fronts as its solutions, that bifurcate in a pitchfork. The bi-domain, which is typically composed of 400 grid points with
furcation parameter in the FN model may be chosen to be time step size of 0.01. The boundary values at one end are
n=+ved. The critical value of this parameter ig.=(3/2y2)  fixed at one of the homogeneous solutions of Eds.and

IIl. NUMERICAL RESULTS
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FIG. 1. (a) Typical traveling front for the CGLE(b) Traveling

) 0 10 20 30 40 50 60 70 80
front in the FN model.

X
(2). At the other end we are free to vary the boundary con-
dition. In our numerical simulations, we keep the domain
large compared to the characteristic spatial extent of th
front, so that the influence of the boundary is only felt when
the front is close enough to it. We verified that the grid and

time steps were small enough to ensure that the numericaln terized by th fani ing front flioping int
solution converged. characterized by the core of an incoming front flipping into

By a suitable choice of initial conditions a Bloch front or the tcore .Of its counterpropagating partner, resulting in the
its counterpropagating partner can be generated. The symmfé(-mO mO\I;mg av':{ay. lotted in the ol f bound |
try of the bifurcation ensures that they have the same speed urobservations are plotted in th€ plane of boundary val-

as long as they are not close to a boundary. A typical front fol'®S: revealing a curve separating regions of .bouncmg and

the parametrically forced CGL equation and the FN systenjirapped frqnts for both (EGL and EN syste_ms. F|gur(i3 shows

of equations is shown in Fig. 1. Bloch fronts for the CGL the transition curve foa——o.;, 7_0'31"8__0'15"“_1.'0’

model show a characteristic chirality broken structure at theif"‘.nd_ v=0.1 fqr_ the parametrically forced CGI.‘ equation. A

core [7] which is essential for their propagation. Similar §|m|lar tr_ansmo_n curve f(_)r the FN model, W|tb|1:_2.0, o

structure considerations apply to fronts in the FN mgadé]. =0.14,€=0.05 is shown in Fig. 4. As one closes in on the
In our simulations we focus on the interaction of incom-

FIG. 2. (a) A typical nontrivial stationary solution which trapped
ronts evolve into for the CGLE. The spatially homogeneous solu-
ions are connected to the Dirichlet boundary valgbsNontrivial
stationary solution for the FN model.

ing Bloch walls with boundaries, where Dirichlet boundary 0 oottt
conditions are imposed on the two fields, Rém A in the 0.1 y
CGL equation andi, v in the FN model. Particularly we look 0.2 .
at how the front cores are perturbed by the boundary for a 03 - 4
whole range of boundary conditions. Fronts coming into the <«

boundary from infinity in both models either rebound or get £ 4T }
trapped depending on the Dirichlet boundary values. A front 05 F 7
that traps loses its core structure and evolves into the nearest -0.6 - .
available stablgattracting configuration of the fields, which 07k |
in this case is the nontrivial steady state solution of @yor 08 . . | | . |

Eq. (2) for that particular boundary condition. Figure 2 16 14 12 1 -08 -06 -04 02

shows a typical nontrivial steady state solution for the CGLE
and FN model. This solution is comprised of a spatially ho-
mogeneous part, and an inhomogeneous part that connectsFIG. 3. Transition curve from a region of trapped Bloch fronts
the spatially homogeneous solutions to the Dirichlet boundto bouncing ones for the CGLE. Reboundary value on the axis;
ary value. Rebounding phenomena close to the boundary isn A boundary value on thg axis.

ReA
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0.6 boundary, the simulation is stopped. The field configuration

is saved and used as the initial condition for the next simu-

0.4 7 lation run. In this new run we make a small change in the
Dirichlet boundary value and move across the transition

02 ] curve into the bouncing region. If the front core in the saved

> configuration is close enough to the boundary, the front will
or 7 get trapped, even if Dirichlet boundary values that produce a
bounce are imposed. An analytical explanation of coexist-

02 T ence for the FN model is given in the next section, which

04 gives insights into the coexistence behavior in both models.

Summarizing, in both systems we have regions of trapped
incoming Bloch fronts and bouncing Bloch fronts in the
plane of boundary values. Critical slowing down of the front

FIG. 4. Transition curve from a region of trapped Bloch fronts dynamics in proximity to a boundary is observed in both
to bouncing ones for the FN modél.boundary value on theaxis; ~ Systems close to the transition curve. Also, the nontrivial
V boundary value on thg axis. stationary solutions in both systems remain stable across the

transition curve, implying that they are not responsible for
curve from the trappingbouncing region, the fronts take the critical behavior we see. Both systems exhibit the coex-
longer to get trappedbounce. This slowing down in the istence of bouncing and trapped solutions.
dynamics close to the transition curve is indicative of critical N the next section, we explain these numerical observa-
behavior, usually associated with eigenvalues of fixed point§Ons by deriving the mechanism that shows hoandc are
that approach zero when a parametae Dirichlet boundary ~ coupled for Dirichlet boundary conditions in the FN model.
value hergis varied. An analytical explanation of the slow-

05 0 05 1 15 2 25 3

ing down is given in the next section. IV. ANALYSIS
Incoming Bloch fronts, in both the CGL and FN models, ) o . ) _ )
evolve into nontrivial stationary solutions to Ed.) and Eq. The goal of this section is to explain front interaction with

(2), respectively, when trapped at the boundary. These noroundaries, in terms of coupling of the ev_olution equations
trivial solutions are linearly stable by virtue of the Bloch fOr the two degrees of freedom, front velociyand the front

fronts evolving into them. It remains to be ascertainegP0Sition x in Eq. (3). It is shown that the coupling is the
whether these solutions remain stable when Dirichlet bound€Sult of the spatial inhomogeneity sensed by the front as it
ary values that lead to a bounce are imposed at the bounda@PProaches the boundary. _ _
Hypothetically, one could associate the loss of stability of e Trestrict ourselves to the regime whereis small and
these nontrivial solutions with the transition from trapping to 7= V€9 IS finite. This restriction leads to a very sharp spatial
bouncing of incoming fronts. We test this hypothesis by carvariation ofu(x,t) field at the core of the front. The slowly
rying out a numerical linear stability analysis of the non-Varyingv(x,t) field can be considered constant in this core
trivial stationary solutionsy,. Equation(1) is linearized to ~ region. Hence the(x, ) field is represented by a single value
vy, at the point where the(x,t) field has zero value. We also

ISP _ (1 +ia@)V2oy+ [ +iv—2(1 +iB)| w2100 restrict ourselves to small front velocities which can be
at done, by either makingy.— » small or choosing a large;.
. The restrictions described above lead to a drastic reduc-
+[y- (L +iByilop*, 4

tion in the number of degrees of freedom used to describe the
for the perturbationsyy=0 at the boundaries. A similar lin- front. As opposed to a front description based on the whole
earization is done for the FN system. It is found that themodel Eq.(2), a sharp frontfast spatial variation ofi at the
eigenvalue spectrum for both systems has negative real paigsre) can be thought of as a point particle with a definite
in the trapping region, as expected. Moreover, these regiosition and velocity. The slowly varying variable can be
parts remain negative when we evaluate the stability of théhought of as a field associated with this particle that allows
nontrivial stationary solutions in the bouncing region. Evenit to sense the boundary. A small velocity has a few simple
though nontrivial solutions are stable in the bouncing regionjmplications. An addition of two kinds of perturbations, one
incoming fronts do not evolve into them. Consequently, thethat changes; (velocity) slightly and the other that produces
critical behavior is not governed by the loss of stability of a local distortion in they(x,t) field far from the front posi-
these solutions. tion, to a slow moving and uniformly translating front, is
We also observe that close to the transition curve bouncfollowed by the disappearance of the distortion and the re-
ing and trapped fronts can co-exist. Instead of coming inaxation of the front back to constant velocity. The time scale
from infinity and rebounding, a Bloch front created close toon which the distortion vanishes is much faster than the scale
the boundary may get trapped even if Dirichlet boundaryon whichv¢ relaxes back to its original value. In essence, we
values that produce a bounce are imposed. To demonstralb@ve two time scales, the slower one associated with non-
this, we choose a boundary value inside the trapping regiorsteady front motion.
close to the transition curve. A Bloch wall is launched from We now employ the restrictions mentioned above to ob-
infinity towards the boundary. As the wall approaches theain a reduced description of E@). We solve Eq(2) with a
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Dirichlet boundary conditiow =v,, at the left boundary. On 7= 1:(X) - (X)) + Syy(X). (9
the right boundary, which is at infinity, we have—q2, and
g?=a, +1/2.Following Ref.[12], we have the following sys- T=c? is the slower time scale responsible for nonsteady

tem of equations: front motion. The coefficients of powers ofin the expan-
sion of » are functions ok to incorporate the broken trans-
.3 lational invariance. Using Eq8) and Eq.(9) in Eq. (6), one
X=- R4 (5) bt i
w2 obtains
and vgn)+qzv(“)—l}§?):—p(”), n=1,2,3.., (10
5 3 with
n+tgqv-v,=—-—=v0to,+1, r=<0o0,
Ve 3 w.©
pmz/_ o,
3 V27
vt+qzv_vrr:_ FU(Oyt)Ur_ly r=0,
V2 3
p? = B [U\(rlz)ovil) + Ul(rzz)ovso)],
v(=xt)=vp, v(et)=-q2 (6) e

Equation(5) implies that the velocity is proportional to the 3 3

value of thev(x, 1) field at the sharp interface formed by the ~ p® =, + r—nlzv‘(rlz)ovﬁo) +—=——[o[w? + o2 ”
u(x,t) field. Equation(6) represents the evolution of the 277 V277

v(x,t) field in a frame of reference which moves with the +U|(|?:)OU|EO)]' (12)
front. The variable is the spatial coordinate from the front

position andr =-x is the distance of the boundary to the left \we use Green’s functions to solve the system of equations
of the front. above. The general solution, given that we have found an

We solve Eq(6) perturbatively. The starting point of the appropriate Green's functio®(r,t|r’,t') is
perturbative expansion is to find a stationary Ising wall so-

lution. Therefore, setting the time derivatives in Ef) to ® t AT
zero and looking for an Ising wall solution, we get v'(r,t) = G(r,tr",t")p"(r',t")dt'dr
{;
2 —
vrr—qU+1—0, r<0, t 9 (n)r/tr
[ ot
vr—qv—-1=0, r=0, ) § s

! ! !
4 G(r,t|r',t )v“‘)

with v(0,)=v(0_)=0 andv(«)=-q 2 This ensures that the (r’,t’)}dt’ds’

Ising wall hasv;=0. The solution to Eq(7) is an
0 ¥=-q2e"-1, r=o, +J G t)o™(r',t)dr’. (12)
v@=qHe -1, r=0. The last term can be made zero by choosing an appropriate

initial condition. The first term gives the influence of sources
on the evolution of the(x,t) field. The second term incor-
porates the influence of boundary conditions. To apply Di-
richlet boundary conditions one finds a Green’s function
which is zero at the left boundary. Since we have a semi-
infinite domain, we use the method of images to write down
%he Green’s function

Hence for the Ising wall ar=-x, we have,v@(-x)=(1
-e /g2

We look for traveling Bloch wall solutions as a perturba-
tion to this uniquely defined Ising wall. Since the Bloch
walls have a Dirichlet boundary conditi@i—x)=v,,, the per-
turbative correction to the Ising wall should have a boundar
value v.=v,—(1-e9)/g?> which changes as the front

moves. e ot (r-r')?
Let v be the perturbation. Then, Grtrt)=————exp-———
( | VAm(t-t') At-t)
=v+09. 8 ;
V=0TV ( ) e_qZ(t_t ) (r + r, + 2X(t,))2
v is expanded in powers af the small perturbation param- - \e"4—7r(t—t’) exp -~ At-t) ,
eter. Since the front bifurcation is a pitchfork,is expanded (13

in powers ofc?:

o where the second term is the image of the first &0 at
ot T = > co™(r,t,T), r=-x, the boundary. Proceeding with the calculation of
n=1 source effects in Eq12), we have
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o t ot (r—r")2 =1,2,3, and requiring the smoothness of the front at all or-
v(r,1) =J J X - T ders, we get the equation for the evolutionvg&cvV:
~xt") Jo V4m(t—t") At-t")
. . 2 “r'_
(RET-(0) i | U . __Ut| dodx dodx doix| AqToN2
—-ex —W pV(r',t)dt'dr’. Ut ol ax ot axat . g% It 9 (1c = m)vg
14 a?
4 - =i, (17)

The Green'’s function terms in E@L4) above contain expo-
nentials of functions of time’ that possess a maxima at
some timet,. Hence most of the contribution to the integral
comes around this maximum value, which is approximately
given byt-t,=|r—r’|/2q for the first integral, and—t,=|r
+r'+2x(t;)|/2q for the second. If the width of the maxima gpq
peak is less than these time differences, we can take the limit

where

o=3N27,=[(2 -e2®)/4g®+ S, + S| L,

t—o in the integrals above. Further, if all the source terms 0 pe—(r+r’+2x)f — el

are smoothly varying functions df, one could perform a S = TR r,
steepest descent approximation to the integrals above assum- ~x\V2valr+r'+2)+bl ¢

ing that the maxima peak is nearly a Gaussian and sharp

enough. Physically, as a consequence of both reaction and % pe—(r+r’+2x)f l_e—qr’]
diffusion, the configuration of fields at present timi Eq. Szzf = dr’.
(10) is determined by the time behavior of sources in an o v2va(r+r'+29)+bl q

earlier small time window, in which reaction and diffusion o o .
mechanisms combine to produce the maximum rate of!€NceS;,S; and soo depend orx,x,x. Neglectingx andx
change of the(x, t) field. At all other times, either reaction N S1 @ndS;, o reduces to
or diffusion is individually dominant and not able to produce 408
a combined high rate of changew(x, t). This is unlike pure o= %
diffusion, where all the time history of sources is required to 2+(1+29xe

give the field configuration at present time. Performing the,

H VEerd, 3
steepest descent calculation, the time portion of the integrd:lar away from the boundary influence, one recovereq
in Eq. (14) can be eliminated and it reduces to as expected. Therefore, one of the effects of proximity to the

boundary is spatial dependence of the critical bifurcation pa-
* pe (' +29f rameterz.. Due to this form ofo, where its dependence on
o™= [ |g+ p"(r)dr,
-X

(18)

velocity and acceleration is ignored and its spatial derivative
falls off sharply withx, all its derivatives in Eq(17) can be
(150  neglected. Thus we have

\,E\s’a(r +r'+2xX)+b

where _ 4q20\5 2
g:e-q\r-r’\/zq, U= 9 (7. = W)Uf_gvf- (19
p= (k32 +_q2)/2q2, We now derive the effect of boundary conditions on the
evolution of the front. Taking the derivative @ with re-
f=Pp+1/4p spect tor’ in Eq. (13) and substituting it in Eq(12), the
' boundary contribution is found to be
= 2 !
a=Xxp-, t vc[x(t/)]e—qz(t—t ) ,
9 2 A $1=- 72 3 L x()]
b= 2x%p?+ 2xp + 1/2. o 2mAt-t)
The first factor in the braceletsdominates the evolution far y C[rex)P | 20
away from the boundary, while the second factor is respon- X 4t—-t") :

sible for sensing the boundary. One notices thahdX, the
velocity and acceleration of the front are involved in the Now we are only interested in the contribution of the bound-
reduced Green’s functions in E@L5). If x and X are ne- ary terms at the front positionp,|,-o. This extra term gets
glected in the expressions abogestifiably so since we are added on ta, the value of the field at the front position,
close to the front bifurcation solving Eg.(10) reduces to thus incorporating the influence of the specific Dirichlet
solving boundary conditiow,, on the front velocity. From now o,
2. _ (), () — _ will stand for ¢4|,=0.

g -y +p"=0, n=1,23. (16) Nonsteady fr|ont motion represented byinvolves time
This is what the authors do in R€fL2], although no bound- derivatives, hence the time derivative ¢f gives the influ-
ary influence is considered. Solving Ed.5) further forn  ence of the boundary condition in accelerating fronts,
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L f oDt Je ) p[_ [x(f)]Z} e
270t T, 2mtAt-t)32 At-t') 0.01 |
() [xt)P ) 0.005 |
X | g?x(t") + - dt’. 21 :
(q x(t) (t—t)  at-t)? (21)
3 0
Incorporating these boundary effects in E49), vi— vy g
+¢1, andvi— v+ ¢y, We get -0.005 -
5 0.01
. 4o 2 a2
Uf:¢2+T(77c_77)(Uf+¢1)—€(vf+¢1)3- o015 | :

(22)

. . . FIG. 5. The dark curves are the nuliclines; grey curves are the
Equation(5) and Eq.(22) constitute the coupling of the two  sojutions to Eq(22) with different initial conditions. These are the
degrees of freedom andx or equivalentlyvs andx in the  typjcal flows in the regime, <0, where incoming fronts always
presence of a spatial inhomogeneity introduced by Dirichlebounce. There are no fixed points ang=—0.1,3,=9.9, €=0.001,
boundary conditions. and 6=1.0.

One of the stationary points of the system above is

x,v¢)=-In(1-v,0%/q,0. This is the point closely con-
(x,v9)=-In(1-v,q%)/q p y Nt N2+ AN,

nected with the dynamics we now describe. We look at the . , (23)
parameter vy in three different regimes, h 2
vp<0, 0<v,<1/g? andv,>1/g? The region of physical 25 3
interest isx>0. v;>0 implies a front moving towards the whereho=4qo2/9(7.=7), and
boundary and; <0 is a front moving away. (1-v,q?) 9q
Although, the convolution integralé, and ¢, represent A= \57] In(L-veeP) |’ (24)

the complete influence of boundary conditions, we wish to
approximate them to obtain a simpler picture that preservess v, — 1/g?, the fixed point moves away from the boundary
the qualitative features of the complete integrals. The intetowards positive infinity anc\,—\,, which is the eigen-
grals involve exponentials of functions that have a maxima avalue for an unstable Ising wall far from the boundary influ-
time t;, and hence most of the contribution is around thisence. Also, in the same limih_— 0, where the zero eigen-
maxima. For small front velocities this maxima is given by value is associated with spatial homogendianslational
t—t,=x/2g. The width of this maxima peak is given by invariancg. This explains the critical slowing down observed
(x/29)%2. If x/2q>(x/29)*?, which it is for a very sharp in the last section. Trajectories wandering close to this fixed
peak, a steepest descent approximation can be made. goint near criticality(v,— 1/¢?) will rebound or trap on a
greater inequality implies a better approximation. The apslower time scale, compared to a relatively faster dynamics
proximation gives, ¢;=-v (X)e ™ and ¢,=dp/dt  when the fixed point is further away from criticality.
=-3¢10/%, where it is again assumed that the velocities are The time scales close to the fixed point are controlled by
small. N\, which has two constituenta,, and \,. A, is associated

In the regimev, <0 the fixed point is in the negative  with the slow time scal@=c%, which depends on the dis-
region and is an unstable spiral. The term involvingk i tance to the front bifurcatiom.— », and can be made arbi-
the expression fop, prevents flows from crossing the nega- trarily small. Therefore, close to the front bifurcatiog, can
tive x region to the positive one and vice versa. Therefore thée neglected in Eq23) and the eigenvalues reduce|iq|
fixed point does not influence tkxe> 0 flows. Figure 5 shows :\S)TX. This is the new time scale determined solely by the
the nullclines and the typical flows. The grey flow curvesinfluence of boundary conditions and is the dominant time
show the turning around of fronts at the boundary. It is no-scale in the nonadiabatic limit of extremely slow velocities.
table that the nullclines are not followed well by the flow Bloch wall trajectories close to the saddle, which either trap
curves and cannot predict the dynamics of front reversalor bounce, evolve on this time scale.
Generally, the flows will agree better with the nuliclines  Typical flows are plotted in Fig. 6. The triangle shows the
when the relaxation rate, determined By~ #, is larger, al-  fixed point. The dashed lines are the invariant sets, with ar-
though the jump from one nulicline to another can only berows showing the direction of flow. The invariant sets sepa-
explained by the dynamical equations. rate basins of attraction of flows towards the boundary and

As one increases,, and enters the €v,<1/9° regime, basins of reflection away from it. This explains the coexist-
the fixed point crosses over into tlxe-0 region. The fixed ence region. If the initial velocity and position of the front is
point now influences the flows close to the boundary. Insteathside the attraction basin, it gets trapped at the boundary, if
of being an unstable spiral it now is a saddle with two dis-not, it rebounds. The numerically obtained transition curve in
tinct real eigenvalues, giving rise to stable and unstablehe last section is a manifestation of this behavior, where
manifolds. The eigenvalues are initial conditions are fixed and varying the boundary values
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FIG. 6. Flows in the coexistence region<@,<1/g? Dark FIG. 8. This shows the actual simulation of E@) for vy,

curves are the nullclines, which intersect at the fixed point. Grey=0.088,a;=9.9, ¢=0.001, and5=1.0. The thick dark lines are the
curves are the solutions to E@2), with different initial conditions.  nullclines. The thin lines are the trajectories.
The dashed lines represent the invariant manifolds separating basins
of attraction and bouncingv,=0.088,a;=9.9,€¢=0.001, andd V. CONCLUSION
=1.0.
We have studied Bloch front motion in the CGL and FN
models in the presence of spatial inhomogeneity introduced
leads to a crossover of the initial condition from a basin ofpy Dirichlet boundary conditions at the boundary. We have
attraction to that of repulsion. It should be noted that theshown similar features in the behavior of Bloch fronts close
coexistence region can only be explained by the presence @ the boundary in both systems. There is a transition from
the fixed point and the dynamics associated with it. An adiatrapping(annihi|atior) to bouncing of incoming Bloch fronts
batic analysis relying on nullclines is not the complete pic-for both systems as a function of Dirichlet boundary values.
ture. Also for certain boundary values trapped and bouncing
For v,>1/qg? the fixed point no longer exists. Figure 7 Bloch fronts coexist.
shows the flows in this regime. Incoming fronts always get |n the sharp front and slow velocity regime for the FN
trapped. Since no fixed points are present, the flow qualitamodel, we were able to give a mathematical mechanism for
tively does what the nuliclines do, as is the case inft€ 0 the trapping, bounce and coexistence of the two. This in-
regime. volves the coupling of the front velocityand front position
Summarizing, transition from bouncing to trapped frontsx close to the boundary. Essentially, Dirichlet boundary con-
is governed by a fixed point close to the boundary. This fixedjitions act as a barrier to Bloch fronts coming in. It is shown
point gives rise to the coexistence behavior, and is absent ifhat this barrier may or may not be penetrated depending
regimes where only trapping or bouncing occurs. We conypon how fast or far away the incoming Bloch wall is cre-
clude our analysis by pointing out that solutions of Etp),  ated. It is never penetrated,uf<O0. It is always penetrated
with approximatedp; and ¢,, agree well qualitatively with  jf y,>1/c2.
the solution of the FN model Eq2) plotted in Fig. 8. This work extends and improves upon the adiabatic analy-
sis of the interaction of fronts with boundaries that was pre-
sented in Ref[4]. The bouncing and trapping of fronts is by

0.015 its nature a nonadiabatic process, and reduced dynamical
0.01 | equations like Eq(5) and Eq.(22) are essential in describing
the jumps from one nulicline to another. Furthermore, since
0.005 - both the equilibrium front velocity and the relaxation to the
equilibrium velocity are slow near the front bifurcation, the
3 0 actual front trjaectories in this regime can stray from the
nullclines even very far from the boundary. Therefore, a non-
-0.005 | adibatic dynamical approach presented here is more appro-
priate. Finally, the invariant sets associated with the fixed
-0.01 points, which are critical elements of a dynamical explana-
tion, cannot be accounted for by an adiabatic analysis relying
-0.015 o 1' é é ; é els ; s solely on nulliclines.
X While the results presented here are for Dirichlet bound-

ary conditions, the considerations made above about the ne-
FIG. 7. Flows in the regime, > 1/q2 Again there are no fixed cessity of a nonadiabatic analysis apply to zero flux bound-
points present and all the flows get trapped at the boundgry. ary conditions studied in Ref4] as well. In particular, our
=0.1,2;=9.9,€=0.001, ands=1.0 dynamic approach can better explore the transition from
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trapped to oscillatingbreathing fronts by actually concen- limit cycle [4]. Detailed results for this case and other gen-
trating on the fixed point as the flows around it change. Alleralized boundary conditions, where the boundaries are per-
the basic ingredients of our calculation presented here fomeable, will form the subject matter of our next paper.
Dirichlet boundary values can be carried over to zero flux
boundary conditions with a modified Green’s function hav-
ing a zero derivative at the boundary. The resulting reduced
dynamical equations, which are the analogs of &gy.and We wish to thank P. Sprunger for useful suggestions. This
Eq. (22), characterize the behavior of the fixed point whichwork was supported in part by National Science Foundation
bifurcates from a stable spiral into an unstable spiral inside &rant No. DMR-9710608.
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