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We study the Ising-Bloch bifurcation in two systems, the complex Ginzburg Landau equation(CGLE) and
a FitzHugh Nagumo(FN) model in the presence of spatial inhomogeneity introduced by Dirichlet boundary
conditions. It is seen that the interaction of fronts with boundaries is similar in both systems, establishing the
generality of the Ising-Bloch bifurcation. We derive reduced dynamical equations for the FN model that
explain front dynamics close to the boundary. We find that front dynamics in a highly nonadiabatic(slow front)
limit is controlled by fixed points of the reduced dynamical equations, that occur close to the boundary.
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I. INTRODUCTION

In spatially extended reaction-diffusion systems far from
equilibrium, the interplay of the diffusion and reaction pro-
cesses is frequently associated with the formation of spatial
or temporal patterns in the concentration fields[1–6]. One
such example is a frontlike structure connecting two different
homogeneous steady states. In a bistable system, where both
steady states are stable against small perturbations, these
fronts can undergo bifurcations, known as nonequilibrium
Ising-Bloch bifurcations, where a stationary Ising front ex-
changes stability with a pair of counterpropagating Bloch
fronts. This bifurcation has been observed in several chemi-
cal reactions[4–6] and also in liquid crystals[7–9] subject to
an external time-dependent perturbation.

Two models of this Ising-Bloch bifurcation have been ex-
tensively studied in this context. One is the parametrically
forced complex Ginzburg Landau equation(CGLE) [7]. This
system describes nematic liquid crystals subjected to a rotat-
ing magnetic field and a high frequency electrical field[8].
The CGLE is often used in spatially extended systems to
describe the dynamics close to an oscillatory instability
(Hopf bifurcation). The other is a FitzHugh Nagumo(FN)
model[4,10–13], which qualitatively models various chemi-
cal reactions[14–16]. Front solutions in this model have
been extensively investigated, specially when translational
invariance is broken by the presence of spatial inhomogene-
ities, which is often the case in realistic experimental situa-
tions. This includes the ways in which one Bloch front can
be perturbatively changed to the other(leading to front re-
versal) [10–13]. Particularly, one such scenario for front re-
versals and other exotic nonuniform(variable velocity) front
motion like breathing, involves the breaking of translational
invariance by zero flux boundary conditions[4]. This non-
uniform motion of fronts is explained by the presence of
uniform velocity front solutions(nullclines of the FN model
partial differential equations) to which faster or slower mov-
ing fronts relax adiabatically.

In this paper we examine nonuniform front motion in the
case when translational invariance is broken by imposing

fixed chemical concentrations at the boundary of a reactor
(Dirichlet boundary conditions). An adiabatic description of
nonuniform front motion along the lines of[4] is inadequate.
It relies on nullclines and fails to explain the jumps from one
nullcline to another or the influence of fixed points. There-
fore, we employ a dynamical approach which satisfactorily
accounts for jumps and fixed point influence. We also estab-
lish the generic nature of nonuniform front motion in the
presence of spatial inhomogeneities by studying it in two
distinct systems, the FN and CGL models.

The interaction of traveling fronts with boundaries for Di-
richlet boundary conditions shows several new features. We
see a transition from front reversal to trapping of an incom-
ing Bloch front on its approach to a boundary as a function
of boundary values. We also find that trapped fronts and
reversed fronts can coexist for certain boundary conditions.
Finally, we derive reduced dynamical equations that explain
the features mentioned above.

In Sec. II of this paper we review the relevant details of
the CGL and FN models. Section III presents our numerical
study of the two models. Section IV contains an analytic
study of front interactions with boundaries for the FN model.
Our conclusions are listed in Sec. V.

II. THE MODELS

The parametrically forced CGLE is the generic model de-
scribing the slow phase and amplitude modulations of a spa-
tially distributed assembly of coupled oscillators near its
Hopf bifurcation [17]. This assembly of auto-oscillators is
parametrically forced at twice its natural frequency and can
be written as

] A

] t
= sm + indA + s1 + iad¹2A − s1 + ibduAu2A + gA * + k.

s1d

The complex fieldA contains the amplitude and phase of the
coupled oscillators,m measures the distance from the oscil-
latory instability threshold,n is the detuning of the forcing
term frequency from exactly twice the Hopf frequency,a
and b are real control parameters, andg.0 is the forcing
amplitude at twice the natural frequency. The right-hand side*Electronic address: yadav@phys.lsu.edu
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of Eq. (1) cannot be written in a variational form ifn , a, and
b are nonzero.

The parameterk represents parametric forcing at the natu-
ral frequency of the system. Ifk=0, Eq.(1) has a the parity
symmetryA→−A, and the nonequilibrium Ising-Bloch bi-
furcation is a symmetric pitchfork[7,18] with the front ve-
locity as the order parameter. Zero velocity Ising walls lose
stability to counterpropagating Bloch walls as the bifurcation
parameterg crosses its critical value. The pitchfork unfolds
into a saddle node bifurcation for a nonzerok, where along
with the stable Ising wall a stable and unstable pair of Bloch
walls appear at the bifurcation. Bloch walls move as a result
of broken chirality symmetry due to the introduction of non-
zero nonvariational parameters[7]. Chirality breaking is un-
like other mechanisms of front motion, where a globally
stable state invades an unstable or metastable state[19,20].
In the perturbative limit when nonvariational parameters
sa ,b ,nd are small, the velocity of Bloch fronts can be shown
to be proportional toÎgc−g as expected for a pitchfork bi-
furcation, wheregc is the critical bifurcation parameter.

Now we look at the FN model which also shows a front
bifurcation. This is a simple two component model and has
been thoroughly analyzed in Refs.[10–13,21] in the context
of this bifurcation. It has been widely used to model patterns
in reactions like the Belousov-Zhabotinsky(BZ) reaction
[22–26], ferrocyanide-iodate-sulfite(FIS) reaction [4] and
chlorite-iodide-malonic-acid reaction(CIMA ) [14–16]. The
two component reaction-diffusion system, withvsx,td im-
peding the production ofusx,td, is given by

] u

] t
= e−1su − u3 − vd + d−1uxx,

] v
] t

= su − a1v − aod + vxx. s2d

The parameterse and d differentiate the time scales and
space scales of the two fields, respectively. The parameters
a1 and ao characterize renormalized local reaction param-
eters, possibly after an adiabatic elimination of faster react-
ing species. Equations(2) are in general nonvariational ex-
cept for certain specific parameter values. The parameterao
is analogous to the parameterk in the CGL equation, and it
controls the symmetry of the front bifurcation. Ifao=0, the
FN model undergoes a symmetric front bifurcation repre-
sented by a pitchfork. For a nonzeroao the pitchfork unfolds
into a saddle node as in the CGLE. A notable difference
between the two systems is the presence of the parameterd
in the FN model. This parameter affects the relative spatial
extent of the fronts connecting the trivial homogeneous so-
lutions of Eq.(2). Thus, by choosing a suitablee /d ratio, the
connecting fronts of one of the fields can be made very sharp
compared to the other. This is not possible in the CGLE,
where fronts for both the real and imaginary parts have the
same spatial extent.

Similar to the CGLE, the FN model has Ising and Bloch
fronts as its solutions, that bifurcate in a pitchfork. The bi-
furcation parameter in the FN model may be chosen to be
h=Îed. The critical value of this parameter ishc=s3/2Î2d

3sa1+1/2d3/2 [12]. The Bloch wall velocities in the FN
model are proportional toÎhc−h, the deviation of the bifur-
cation parameter from its critical value, as expected for a
pitchfork bifurcation.

As discussed above, both these models have common fea-
tures associated with the front bifurcation. This forms the
basis of their comparative study in the forthcoming sections.
Front dynamics in both these systems can be represented by
the system of equations,

ẋ = c,

ċ = src − rdc − gc3. s3d

These equations employ the pitchfork bifurcation normal
form with velocity as the order parameter, coupled with the
trivial observation that the velocity is the rate of change of
position. The front velocityc and positionx, therefore con-
stitute two degrees of freedom, that are sufficient to describe
front dynamics close to the front bifurcation. The bifurcation
parameterr is denoted byg for the CGL equation andhc for
the FN model. The two independent variablesc andx in Eq.
(3), which are obviously uncoupled, represent dynamics
where translational invariance is present, and the solutions
are independent of a choice of spatial origin. Scenarios can
be envisioned where this translational invariance is broken.
Examples are the imposition of different boundary condi-
tions [4] or spatial inhomogeneities introduced externally via
an advective field[12]. To account for broken translational
invariance in these scenarios, one has to modify Eq.(3). This
would lead to the coupling of the two degrees of freedomx
and c, the details of which would depend on the scenario
considered. In this paper, we introduce a spatial inhomoge-
neity in the form of Dirichlet boundary conditions, examin-
ing its effect on incoming Bloch fronts in both models, and
drawing parallels. The next section constitutes our numerical
study. In Sec. IV, we derive and analyze the way in which
Dirichlet boundary conditions couplex and c for the FN
model. Such an analysis is not possible for the CGL equation
since it is impossible to represent the front position by a
single point. Therefore, we rely exclusively on numerical
simulations for that equation.

III. NUMERICAL RESULTS

In this section we lay out the numerical details of the
study of the CGL and FN models. The simulations in the two
models are carried out in regimes where analytical calcula-
tions performed by reducing front dynamics to a fewer de-
grees of freedom are not possible. This is the regime where
Bloch fronts have high velocities(far beyond the front bifur-
cation threshold), and the fields forming the front core, have
similar spatial scales.

We solve both the CGL and FN system of reaction diffu-
sion equations using an implicit Crank-Nicholson scheme.
Dirichlet boundary conditions are used at both ends of the
domain, which is typically composed of 400 grid points with
a time step size of 0.01. The boundary values at one end are
fixed at one of the homogeneous solutions of Eqs.(1) and
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(2). At the other end we are free to vary the boundary con-
dition. In our numerical simulations, we keep the domain
large compared to the characteristic spatial extent of the
front, so that the influence of the boundary is only felt when
the front is close enough to it. We verified that the grid and
time steps were small enough to ensure that the numerical
solution converged.

By a suitable choice of initial conditions a Bloch front or
its counterpropagating partner can be generated. The symme-
try of the bifurcation ensures that they have the same speed
as long as they are not close to a boundary. A typical front for
the parametrically forced CGL equation and the FN system
of equations is shown in Fig. 1. Bloch fronts for the CGL
model show a characteristic chirality broken structure at their
core [7] which is essential for their propagation. Similar
structure considerations apply to fronts in the FN model[21].

In our simulations we focus on the interaction of incom-
ing Bloch walls with boundaries, where Dirichlet boundary
conditions are imposed on the two fields, ReA, Im A in the
CGL equation andu,v in the FN model. Particularly we look
at how the front cores are perturbed by the boundary for a
whole range of boundary conditions. Fronts coming into the
boundary from infinity in both models either rebound or get
trapped depending on the Dirichlet boundary values. A front
that traps loses its core structure and evolves into the nearest
available stable(attracting) configuration of the fields, which
in this case is the nontrivial steady state solution of Eq.(1) or
Eq. (2) for that particular boundary condition. Figure 2
shows a typical nontrivial steady state solution for the CGLE
and FN model. This solution is comprised of a spatially ho-
mogeneous part, and an inhomogeneous part that connects
the spatially homogeneous solutions to the Dirichlet bound-
ary value. Rebounding phenomena close to the boundary is

characterized by the core of an incoming front flipping into
the core of its counterpropagating partner, resulting in the
front moving away.

Our observations are plotted in the plane of boundary val-
ues, revealing a curve separating regions of bouncing and
trapped fronts for both CGL and FN systems. Figure 3 shows
the transition curve fora=−0.1,g=0.31,b=−0.15,m=1.0,
and n=0.1 for the parametrically forced CGL equation. A
similar transition curve for the FN model, witha1=2.0, d
=0.14,e=0.05 is shown in Fig. 4. As one closes in on the

FIG. 1. (a) Typical traveling front for the CGLE.(b) Traveling
front in the FN model.

FIG. 2. (a) A typical nontrivial stationary solution which trapped
fronts evolve into for the CGLE. The spatially homogeneous solu-
tions are connected to the Dirichlet boundary values.(b) Nontrivial
stationary solution for the FN model.

FIG. 3. Transition curve from a region of trapped Bloch fronts
to bouncing ones for the CGLE. ReA boundary value on thex axis;
Im A boundary value on they axis.
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curve from the trapping(bouncing) region, the fronts take
longer to get trapped(bounce). This slowing down in the
dynamics close to the transition curve is indicative of critical
behavior, usually associated with eigenvalues of fixed points
that approach zero when a parameter(the Dirichlet boundary
value here) is varied. An analytical explanation of the slow-
ing down is given in the next section.

Incoming Bloch fronts, in both the CGL and FN models,
evolve into nontrivial stationary solutions to Eq.(1) and Eq.
(2), respectively, when trapped at the boundary. These non-
trivial solutions are linearly stable by virtue of the Bloch
fronts evolving into them. It remains to be ascertained
whether these solutions remain stable when Dirichlet bound-
ary values that lead to a bounce are imposed at the boundary.
Hypothetically, one could associate the loss of stability of
these nontrivial solutions with the transition from trapping to
bouncing of incoming fronts. We test this hypothesis by car-
rying out a numerical linear stability analysis of the non-
trivial stationary solutionsco. Equation(1) is linearized to

] dc

] t
= s1 + iad¹2dc + fm + in − 2s1 + ibducou2gdc

+ fg − s1 + ibdco
2gdc * , s4d

for the perturbationdc=0 at the boundaries. A similar lin-
earization is done for the FN system. It is found that the
eigenvalue spectrum for both systems has negative real parts
in the trapping region, as expected. Moreover, these real
parts remain negative when we evaluate the stability of the
nontrivial stationary solutions in the bouncing region. Even
though nontrivial solutions are stable in the bouncing region,
incoming fronts do not evolve into them. Consequently, the
critical behavior is not governed by the loss of stability of
these solutions.

We also observe that close to the transition curve bounc-
ing and trapped fronts can co-exist. Instead of coming in
from infinity and rebounding, a Bloch front created close to
the boundary may get trapped even if Dirichlet boundary
values that produce a bounce are imposed. To demonstrate
this, we choose a boundary value inside the trapping region,
close to the transition curve. A Bloch wall is launched from
infinity towards the boundary. As the wall approaches the

boundary, the simulation is stopped. The field configuration
is saved and used as the initial condition for the next simu-
lation run. In this new run we make a small change in the
Dirichlet boundary value and move across the transition
curve into the bouncing region. If the front core in the saved
configuration is close enough to the boundary, the front will
get trapped, even if Dirichlet boundary values that produce a
bounce are imposed. An analytical explanation of coexist-
ence for the FN model is given in the next section, which
gives insights into the coexistence behavior in both models.

Summarizing, in both systems we have regions of trapped
incoming Bloch fronts and bouncing Bloch fronts in the
plane of boundary values. Critical slowing down of the front
dynamics in proximity to a boundary is observed in both
systems close to the transition curve. Also, the nontrivial
stationary solutions in both systems remain stable across the
transition curve, implying that they are not responsible for
the critical behavior we see. Both systems exhibit the coex-
istence of bouncing and trapped solutions.

In the next section, we explain these numerical observa-
tions by deriving the mechanism that shows howx andc are
coupled for Dirichlet boundary conditions in the FN model.

IV. ANALYSIS

The goal of this section is to explain front interaction with
boundaries, in terms of coupling of the evolution equations
for the two degrees of freedom, front velocityc and the front
position x in Eq. (3). It is shown that the coupling is the
result of the spatial inhomogeneity sensed by the front as it
approaches the boundary.

We restrict ourselves to the regime wheree /d is small and
h=Îed is finite. This restriction leads to a very sharp spatial
variation ofusx,td field at the core of the front. The slowly
varying vsx,td field can be considered constant in this core
region. Hence thevsx,td field is represented by a single value
v f, at the point where theusx,td field has zero value. We also
restrict ourselves to small front velocitiesc, which can be
done, by either makinghc−h small or choosing a largea1.

The restrictions described above lead to a drastic reduc-
tion in the number of degrees of freedom used to describe the
front. As opposed to a front description based on the whole
model Eq.(2), a sharp front(fast spatial variation ofu at the
core) can be thought of as a point particle with a definite
position and velocity. The slowly varyingv variable can be
thought of as a field associated with this particle that allows
it to sense the boundary. A small velocity has a few simple
implications. An addition of two kinds of perturbations, one
that changesv f (velocity) slightly and the other that produces
a local distortion in thevsx,td field far from the front posi-
tion, to a slow moving and uniformly translating front, is
followed by the disappearance of the distortion and the re-
laxation of the front back to constant velocity. The time scale
on which the distortion vanishes is much faster than the scale
on whichv f relaxes back to its original value. In essence, we
have two time scales, the slower one associated with non-
steady front motion.

We now employ the restrictions mentioned above to ob-
tain a reduced description of Eq.(2). We solve Eq.(2) with a

FIG. 4. Transition curve from a region of trapped Bloch fronts
to bouncing ones for the FN model.U boundary value on thex axis;
V boundary value on they axis.
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Dirichlet boundary conditionv=vb at the left boundary. On
the right boundary, which is at infinity, we havev=−q−2, and
q2=a1+1/2.Following Ref.[12], we have the following sys-
tem of equations:

ẋ = −
3

hÎ2
v f , s5d

and

vt + q2v − vrr = −
3

hÎ2
vs0,tdvr + 1, r ø 0,

vt + q2v − vrr = −
3

hÎ2
vs0,tdvr − 1, r ù 0,

vs− x,td = vb, vs`,td = − q−2. s6d

Equation(5) implies that the velocity is proportional to the
value of thevsx,td field at the sharp interface formed by the
usx,td field. Equation (6) represents the evolution of the
vsx,td field in a frame of reference which moves with the
front. The variabler is the spatial coordinate from the front
position andr =−x is the distance of the boundary to the left
of the front.

We solve Eq.(6) perturbatively. The starting point of the
perturbative expansion is to find a stationary Ising wall so-
lution. Therefore, setting the time derivatives in Eq.(6) to
zero and looking for an Ising wall solution, we get

vrr − q2v + 1 = 0, r ø 0,

vrr − q2v − 1 = 0, r ù 0, s7d

with vs0+d=vs0−d=0 andvs`d=−q−2. This ensures that the
Ising wall hasv f =0. The solution to Eq.(7) is

vs0d = − q−2seqr − 1d, r ø 0,

vs0d = q−2se−qr − 1d, r ù 0.

Hence for the Ising wall atr =−x, we have,vs0ds−xd=s1
−e−qxd /q2.

We look for traveling Bloch wall solutions as a perturba-
tion to this uniquely defined Ising wall. Since the Bloch
walls have a Dirichlet boundary conditionvs−xd=vb, the per-
turbative correction to the Ising wall should have a boundary
value vc=vb−s1−e−qxd /q2 which changes as the front
moves.

Let v̄ be the perturbation. Then,

v = v̄ + vs0d. s8d

v̄ is expanded in powers ofc, the small perturbation param-
eter. Since the front bifurcation is a pitchfork,h is expanded
in powers ofc2:

v̄sr,t,Td = o
n=1

`

csndvsndsr,t,Td,

h = hcsxd − c2h1sxd + c4h2sxd. s9d

T=c2t is the slower time scale responsible for nonsteady
front motion. The coefficients of powers ofc in the expan-
sion of h are functions ofx to incorporate the broken trans-
lational invariance. Using Eq.(8) and Eq.(9) in Eq. (6), one
obtains

vt
snd + q2vsnd − vrr

snd = − rsnd, n = 1,2,3…, s10d

with

rs1d =
3

Î2hc

vur=0
s1d vr

s0d,

rs2d =
3

Î2hc

fvur=0
s1d vr

s1d + vur=0
s2d vr

s0dg,

rs3d = vT
s1d +

3h1

Î2hc
2vur=0

s1d vr
s0d +

3
Î2hc

fvur=0
s1d vr

s2d + vur=0
s2d vr

s2d

+ vur=0
s3d vr

s0dg. s11d

We use Green’s functions to solve the system of equations
above. The general solution, given that we have found an
appropriate Green’s functionGsr ,t u r8 ,t8d is

vsndsr,td =E
ti

t E Gsr,tur8,t8drnsr8,t8ddt8dr8

+E
ti

t E
s8
FGsr,tur8,t8d

]8vsndsr8,t8d
] n

−
]8Gsr,tur8,t8d

] n
vsndsr8,t8dGdt8ds8

+E Gsr,tur8,tidvsndsr8,tiddr8. s12d

The last term can be made zero by choosing an appropriate
initial condition. The first term gives the influence of sources
on the evolution of thevsx,td field. The second term incor-
porates the influence of boundary conditions. To apply Di-
richlet boundary conditions one finds a Green’s function
which is zero at the left boundary. Since we have a semi-
infinite domain, we use the method of images to write down
the Green’s function

Gsr,tur8,t8d =
e−q2st−t8d

Î4pst − t8d
expF−

sr − r8d2

4st − t8d
G

−
e−q2st−t8d

Î4pst − t8d
expF−

„r + r8 + 2xst8d…2

4st − t8d
G ,

s13d

where the second term is the image of the first andG=0 at
r =−x, the boundary. Proceeding with the calculation of
source effects in Eq.(12), we have
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vsndsr,td =E
−xst8d

` E
0

t e−q2st−t8d

Î4pst − t8d
HexpF−

sr − r8d2

4st − t8d
G

− expF−
„r + r8 + 2xst8d…2

4st − t8d
GJrsndsr8,t8ddt8dr8.

s14d

The Green’s function terms in Eq.(14) above contain expo-
nentials of functions of timet8 that possess a maxima at
some timeto8. Hence most of the contribution to the integral
comes around this maximum value, which is approximately
given by t− to8= ur −r8u /2q for the first integral, andt− to8= ur
+r8+2xsto8du /2q for the second. If the width of the maxima
peak is less than these time differences, we can take the limit
t→` in the integrals above. Further, if all the source terms
are smoothly varying functions oft8, one could perform a
steepest descent approximation to the integrals above assum-
ing that the maxima peak is nearly a Gaussian and sharp
enough. Physically, as a consequence of both reaction and
diffusion, the configuration of fields at present timet in Eq.
(10) is determined by the time behavior of sources in an
earlier small time window, in which reaction and diffusion
mechanisms combine to produce the maximum rate of
change of thevsx,td field. At all other times, either reaction
or diffusion is individually dominant and not able to produce
a combined high rate of change ofvsx,td. This is unlike pure
diffusion, where all the time history of sources is required to
give the field configuration at present time. Performing the
steepest descent calculation, the time portion of the integral
in Eq. (14) can be eliminated and it reduces to

vsndsrd =E
−x

` Fg +
pe−sr+r8+2xdf

Î2Îasr + r8 + 2xd + b
Grsndsr8ddr8,

s15d

where

g = e−qur−r8u/2q,

p = sẋ ± Îẋ2 + q2d/2q2,

f = q2p + 1/4p,

a = ẍp2,

b = 2ẋ2p2 + 2ẋp + 1/2.

The first factor in the braceletsg dominates the evolution far
away from the boundary, while the second factor is respon-
sible for sensing the boundary. One notices thatẋ and ẍ, the
velocity and acceleration of the front are involved in the
reduced Green’s functions in Eq.(15). If ẋ and ẍ are ne-
glected in the expressions above(justifiably so since we are
close to the front bifurcation), solving Eq.(10) reduces to
solving

q2vsnd − vrr
snd + rsnd = 0, n = 1,2,3. s16d

This is what the authors do in Ref.[12], although no bound-
ary influence is considered. Solving Eq.(15) further for n

=1,2,3, and requiring the smoothness of the front at all or-
ders, we get the equation for the evolution ofv f =cvs1d:

v̇ f = −
v f

s
F ] s

] x

] x

] t
+

] s

] ẋ

] ẋ

] t
+

] s

] ẍ

] ẍ

] t
G +

4q2sÎ2

9
shc − hdv f

−
s2

6
v f

3, s17d

where

s = 3/Î2hc = fs2 − e−2qxd/4q3 + S1 + S2g−1,

and

S1 =E
−x

0 pe−sr+r8+2xdf

Î2Îasr + r8 + 2xd + b
F− eqr8

q
Gdr8,

S2 =E
0

` pe−sr+r8+2xdf

Î2Îasr + r8 + 2xd + b
F− e−qr8

q
Gdr8.

HenceS1,S2 and sos depend onx, ẋ, ẍ. Neglectingẋ and ẍ
in S1 andS2,s reduces to

s =
4q3

2 + s1 + 2qxde−2qx . s18d

Far away from the boundary influence, one recoverss=2q3

as expected. Therefore, one of the effects of proximity to the
boundary is spatial dependence of the critical bifurcation pa-
rameterhc. Due to this form ofs, where its dependence on
velocity and acceleration is ignored and its spatial derivative
falls off sharply withx, all its derivatives in Eq.(17) can be
neglected. Thus we have

v̇ f =
4q2sÎ2

9
shc − hdv f −

s2

6
v f

3. s19d

We now derive the effect of boundary conditions on the
evolution of the front. Taking the derivative ofG with re-
spect tor8 in Eq. (13) and substituting it in Eq.(12), the
boundary contribution is found to be

f1 = −E
0

t vcfxst8dge−q2st−t8d

2p1/2st − t8d3/2 fr + xst8dg

3expF−
fr + xst8dg2

4st − t8d
Gdt8. s20d

Now we are only interested in the contribution of the bound-
ary terms at the front position,f1ur=0. This extra term gets
added on tov f, the value of thev field at the front position,
thus incorporating the influence of the specific Dirichlet
boundary conditionvb on the front velocity. From now onf1
will stand for f1ur=0.

Nonsteady front motion represented byv̇ f involves time
derivatives, hence the time derivative off1 gives the influ-
ence of the boundary condition in accelerating fronts,
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f2 =
] f1

] t
= −E

0

t vcfxst8dge−q2st−t8d

2p1/2st − t8d3/2 expF−
fxst8dg2

4st − t8d
G

3 Sq2xst8d +
3xst8d
st − t8d

−
fxst8dg3

4st − t8d2Ddt8. s21d

Incorporating these boundary effects in Eq.(19), v f →v f
+f1, and v̇ f → v̇ f +f2, we get

v̇ f = f2 +
4q2sÎ2

9
shc − hdsv f + f1d −

s2

6
sv f + f1d3.

s22d

Equation(5) and Eq.(22) constitute the coupling of the two
degrees of freedomc and x or equivalentlyv f and x in the
presence of a spatial inhomogeneity introduced by Dirichlet
boundary conditions.

One of the stationary points of the system above is
sx,v fd=−lns1−vbq

2d /q,0. This is the point closely con-
nected with the dynamics we now describe. We look at the
parameter vb in three different regimes,
vb,0, 0,vb,1/q2, andvb.1/q2. The region of physical
interest isx.0. v f .0 implies a front moving towards the
boundary andv f ,0 is a front moving away.

Although, the convolution integralsf1 and f2 represent
the complete influence of boundary conditions, we wish to
approximate them to obtain a simpler picture that preserves
the qualitative features of the complete integrals. The inte-
grals involve exponentials of functions that have a maxima at
time to8, and hence most of the contribution is around this
maxima. For small front velocities this maxima is given by
t− to8=x/2q. The width of this maxima peak is given by
sx/2qd3/2. If x/2q@ sx/2qd3/2, which it is for a very sharp
peak, a steepest descent approximation can be made. A
greater inequality implies a better approximation. The ap-
proximation gives, f1=−vcsxde−qx and f2=]f1/]t
=−3f1q/x, where it is again assumed that the velocities are
small.

In the regimevb,0 the fixed point is in the negativex
region and is an unstable spiral. The term involving 1/x in
the expression forf2 prevents flows from crossing the nega-
tive x region to the positive one and vice versa. Therefore the
fixed point does not influence thex.0 flows. Figure 5 shows
the nullclines and the typical flows. The grey flow curves
show the turning around of fronts at the boundary. It is no-
table that the nullclines are not followed well by the flow
curves and cannot predict the dynamics of front reversal.
Generally, the flows will agree better with the nullclines
when the relaxation rate, determined byhc−h, is larger, al-
though the jump from one nullcline to another can only be
explained by the dynamical equations.

As one increasesvb and enters the 0,vb,1/q2 regime,
the fixed point crosses over into thex.0 region. The fixed
point now influences the flows close to the boundary. Instead
of being an unstable spiral it now is a saddle with two dis-
tinct real eigenvalues, giving rise to stable and unstable
manifolds. The eigenvalues are

l± =
lo ± Îlo

2 + 4lx

2
, s23d

wherelo=4q2sÎ2/9shc−hd, and

lx = −
s1 − vbq

2d
Î2h

F 9q

lns1 − vbq
2dG . s24d

As vb→1/q2, the fixed point moves away from the boundary
towards positive infinity andl+→lo, which is the eigen-
value for an unstable Ising wall far from the boundary influ-
ence. Also, in the same limit,l−→0, where the zero eigen-
value is associated with spatial homogeneity(translational
invariance). This explains the critical slowing down observed
in the last section. Trajectories wandering close to this fixed
point near criticalitysvb→1/q2d will rebound or trap on a
slower time scale, compared to a relatively faster dynamics
when the fixed point is further away from criticality.

The time scales close to the fixed point are controlled by
l, which has two constituents,lo and lx. lo is associated
with the slow time scaleT=c2t, which depends on the dis-
tance to the front bifurcationhc−h, and can be made arbi-
trarily small. Therefore, close to the front bifurcation,lo can
be neglected in Eq.(23) and the eigenvalues reduce toul±u
=Îlx. This is the new time scale determined solely by the
influence of boundary conditions and is the dominant time
scale in the nonadiabatic limit of extremely slow velocities.
Bloch wall trajectories close to the saddle, which either trap
or bounce, evolve on this time scale.

Typical flows are plotted in Fig. 6. The triangle shows the
fixed point. The dashed lines are the invariant sets, with ar-
rows showing the direction of flow. The invariant sets sepa-
rate basins of attraction of flows towards the boundary and
basins of reflection away from it. This explains the coexist-
ence region. If the initial velocity and position of the front is
inside the attraction basin, it gets trapped at the boundary, if
not, it rebounds. The numerically obtained transition curve in
the last section is a manifestation of this behavior, where
initial conditions are fixed and varying the boundary values

FIG. 5. The dark curves are the nullclines; grey curves are the
solutions to Eq.(22) with different initial conditions. These are the
typical flows in the regimevb,0, where incoming fronts always
bounce. There are no fixed points andvb=−0.1,a1=9.9, e=0.001,
andd=1.0.
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leads to a crossover of the initial condition from a basin of
attraction to that of repulsion. It should be noted that the
coexistence region can only be explained by the presence of
the fixed point and the dynamics associated with it. An adia-
batic analysis relying on nullclines is not the complete pic-
ture.

For vb.1/q2 the fixed point no longer exists. Figure 7
shows the flows in this regime. Incoming fronts always get
trapped. Since no fixed points are present, the flow qualita-
tively does what the nullclines do, as is the case in thevb,0
regime.

Summarizing, transition from bouncing to trapped fronts
is governed by a fixed point close to the boundary. This fixed
point gives rise to the coexistence behavior, and is absent in
regimes where only trapping or bouncing occurs. We con-
clude our analysis by pointing out that solutions of Eq.(19),
with approximatedf1 and f2, agree well qualitatively with
the solution of the FN model Eq.(2) plotted in Fig. 8.

V. CONCLUSION

We have studied Bloch front motion in the CGL and FN
models in the presence of spatial inhomogeneity introduced
by Dirichlet boundary conditions at the boundary. We have
shown similar features in the behavior of Bloch fronts close
to the boundary in both systems. There is a transition from
trapping(annihilation) to bouncing of incoming Bloch fronts
for both systems as a function of Dirichlet boundary values.
Also for certain boundary values trapped and bouncing
Bloch fronts coexist.

In the sharp front and slow velocity regime for the FN
model, we were able to give a mathematical mechanism for
the trapping, bounce and coexistence of the two. This in-
volves the coupling of the front velocityc and front position
x close to the boundary. Essentially, Dirichlet boundary con-
ditions act as a barrier to Bloch fronts coming in. It is shown
that this barrier may or may not be penetrated depending
upon how fast or far away the incoming Bloch wall is cre-
ated. It is never penetrated, ifvb,0. It is always penetrated
if vb.1/q2.

This work extends and improves upon the adiabatic analy-
sis of the interaction of fronts with boundaries that was pre-
sented in Ref.[4]. The bouncing and trapping of fronts is by
its nature a nonadiabatic process, and reduced dynamical
equations like Eq.(5) and Eq.(22) are essential in describing
the jumps from one nullcline to another. Furthermore, since
both the equilibrium front velocity and the relaxation to the
equilibrium velocity are slow near the front bifurcation, the
actual front trjaectories in this regime can stray from the
nullclines even very far from the boundary. Therefore, a non-
adibatic dynamical approach presented here is more appro-
priate. Finally, the invariant sets associated with the fixed
points, which are critical elements of a dynamical explana-
tion, cannot be accounted for by an adiabatic analysis relying
solely on nullclines.

While the results presented here are for Dirichlet bound-
ary conditions, the considerations made above about the ne-
cessity of a nonadiabatic analysis apply to zero flux bound-
ary conditions studied in Ref.[4] as well. In particular, our
dynamic approach can better explore the transition from

FIG. 6. Flows in the coexistence region 0,vb,1/q2. Dark
curves are the nullclines, which intersect at the fixed point. Grey
curves are the solutions to Eq.(22), with different initial conditions.
The dashed lines represent the invariant manifolds separating basins
of attraction and bouncing.vb=0.088,a1=9.9, e=0.001, andd
=1.0.

FIG. 7. Flows in the regimevb.1/q2. Again there are no fixed
points present and all the flows get trapped at the boundary.vb

=0.1, a1=9.9, e=0.001, andd=1.0

FIG. 8. This shows the actual simulation of Eq.(2) for vb

=0.088,a1=9.9, e=0.001, andd=1.0. The thick dark lines are the
nullclines. The thin lines are the trajectories.

A. YADAV AND D. A. BROWNE PHYSICAL REVIEW E 70, 036218(2004)

036218-8



trapped to oscillating(breathing) fronts by actually concen-
trating on the fixed point as the flows around it change. All
the basic ingredients of our calculation presented here for
Dirichlet boundary values can be carried over to zero flux
boundary conditions with a modified Green’s function hav-
ing a zero derivative at the boundary. The resulting reduced
dynamical equations, which are the analogs of Eq.(5) and
Eq. (22), characterize the behavior of the fixed point which
bifurcates from a stable spiral into an unstable spiral inside a

limit cycle [4]. Detailed results for this case and other gen-
eralized boundary conditions, where the boundaries are per-
meable, will form the subject matter of our next paper.
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